Hölderian Invariance Principle for Hilbertian Linear Processes

نویسندگان

  • Alfredas Račkauskas
  • Charles Suquet
چکیده

Let (ξn)n≥1 be the polygonal partial sums processes built on the linear processes Xn = ∑ i≥0 ai( n−i), n ≥ 1, where ( i)i∈Z are i.i.d., centered random elements in some separable Hilbert space H and the ai’s are bounded linear operators H → H, with ∑i≥0‖ai‖ < ∞. We investigate functional central limit theorem for ξn in the Hölder spaces H o ρ(H) of functions x : [0, 1] → H such that ‖x(t+ h) − x(t)‖ = o(ρ(h)) uniformly in t, where ρ(h) = hL(1/h), 0 ≤ h ≤ 1 with 0 < α ≤ 1/2 and L slowly varying at infinity. We obtain the Hρ(H) weak convergence of ξn to some H valued Brownian motion under the optimal assumption that for any c > 0, tP (‖ 0‖ > ctρ(1/t)) = o(1) when t tends to infinity, subject to some mild restriction on L in the boundary case α = 1/2. Our result holds in particular with the weight functions ρ(h) = h ln(1/h), β > 1/2. Résumé. Soit (ξn)n≥1 le processus polygonal de sommes partielles bâti sur le processus linéaire Xn = ∑ i≥0 ai( n−i), n ≥ 1, les ( i)i∈Z étant des éléments aléatoires i.i.d., centrés d’un espace de Hilbert séparable H et les ai’s des opérateurs linéaires bornés H → H, vérifiant ∑i≥0‖ai‖ < ∞. Nous étudions le théorème limite central fonctionnel pour ξn dans les espaces de Hölder H o ρ(H) de fonctions x : [0, 1] → H vérifiant ‖x(t+ h)− x(t)‖ = o(ρ(h)) uniformément en t, où ρ(h) = hL(1/h), 0 ≤ h ≤ 1 avec 0 < α ≤ 1/2 et L à variation lente. Nous prouvons la convergence en loi dans Hρ(H) de ξn vers un mouvement brownien à valeurs dans H, sous la condition optimale que pour tout c > 0, tP (‖ 0‖ > ctρ(1/t)) = o(1) quand t tend vers l’infini, au prix dans le cas limite α = 1/2 d’une légère restriction sur L. Notre résultat s’applique en particulier au cas ρ(h) = h ln(1/h), β > 1/2. Mathematics Subject Classification. 60F17, 60B12. Received December 14, 2007. Revised March 11, 2008. Introduction Let us denote by C[0, 1] = C([0, 1],R) the space of continuous functions x : [0, 1] → R, endowed with the supremum norm. The classical Donsker-Prohorov invariance principle states the C[0, 1]-weak convergence to

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariance principle for stochastic processes with short memory

Abstract: In this paper we give simple sufficient conditions for linear type processes with short memory that imply the invariance principle. Various examples including projective criterion are considered as applications. In particular, we treat the weak invariance principle for partial sums of linear processes with short memory. We prove that whenever the partial sums of innovations satisfy th...

متن کامل

An Empirical Study for the Estimation of Autoregressive Hilbertian Processes by Wavelet Packet Method

Abstract. In this paper wavelet packet bases are used for an estimation of the autoregressive Hilbertian processes operator. We assume that integral operator kernel can have some singular structures and estimate them by projecting functional processes on suitable bases. Linear methods for continuous-time prediction using Hilbert-valued autoregressive processes are compared with the suggested me...

متن کامل

An Invariance Principle for Sieve Bootstrap in Time Series

This paper establishes an invariance principle applicable for the asymptotic analysis of sieve bootstrap in time series+ The sieve bootstrap is based on the approximation of a linear process by a finite autoregressive process of order increasing with the sample size, and resampling from the approximated autoregression+ In this context, we prove an invariance principle for the bootstrap samples ...

متن کامل

Series Representations for Multivariate Generalized Gamma Processes via a Scale Invariance Principle

We introduce a scale invariance property for Poisson point processes and use this property to define a series representation for a correlated bivariate gamma process. This approach is quite general and can be used to define other types of multidimensional Lévy processes with given marginals. Some important special cases are bivariate G-processes, bivariate variance gamma processes and multivari...

متن کامل

A Nonconventional Invariance Principle for Random Fields

In [16] we obtained a nonconventional invariance principle (functional central limit theorem) for sufficiently fast mixing stochastic processes with discrete and continuous time. In this paper we derive a nonconventional invariance principle for sufficiently well mixing random fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009